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Abstract

Over the past several years, the death rate associated with drug poisoning has increased by over 

300% in the U.S. Drug poisoning mortality varies widely by state, but geographic variation at the 

substate level has largely not been explored. National mortality data (2007–2009) and small area 

estimation methods were used to predict age-adjusted death rates due to drug poisoning at the 

county level, which were then mapped in order to explore: whether drug poisoning mortality 

clusters by county, and where hot and cold spots occur (i.e., groups of counties that evidence 

extremely high or low age-adjusted death rates due to drug poisoning). Results highlight several 

regions of the U.S. where the burden of drug poisoning mortality is especially high. Findings may 

help inform efforts to address the growing problem of drug poisoning mortality by indicating 

where the epidemic is concentrated geographically.
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1. Introduction

The burden of mortality and morbidity associated with drug poisoning represents a growing 

public health concern in the U.S. Poisoning has recently overtaken motor vehicle crashes as 

the leading cause of injury death in the U.S.; the death rate associated with drug poisoning 

has increased by approximately 300% over the past several decades (Warner et al., 2011). 

Increases in deaths due to opioid analgesics have been particularly large for U.S. women, 

rising by 415% since 1999 (Centers for Disease Control and Prevention, 2013). Opioid 
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analgesics contribute to more than three in four poisoning deaths; and the use and misuse of 

prescription drugs, particularly opioid analgesics, has increased in parallel with drug 

poisoning mortality (Centers for Disease Control and Prevention, 2011, 2013). There is wide 

variation at the state level with respect to age-adjusted drug poisoning death rates (Centers 

for Disease Control and Prevention, 2011; Paulozzi and Ryan, 2006; Warner et al., 2011). 

Extremely high annual rates have been observed for New Mexico (30.8 per 100,000), West 

Virginia (27.6 per 100,000), Alaska (24.2 per 100,000), Nevada (21.0 per 100,000), and 

Utah (20.8 per 100,000) (Centers for Disease Control and Prevention, 2011; Warner et al., 

2011). However, variation within states has largely not been examined.

A few studies have looked at variation at the sub-state level, but have focused on limited 

geographic areas such as New York City, Rhode Island, North Carolina, New Hampshire 

and Connecticut (Cerdá et al, 2013; DiMaggio et al., 2008; Green and Donnelly, 2011; 

Green et al., 2011; Hester et al., 2012; Modarai et al., 2013). Some studies have suggested 

that drug poisoning mortality disproportionately affects rural areas as compared to urban 

(Paulozzi and Xi, 2008), but it is possible that urban–rural differences may be influenced by 

underlying geographic or regional patterns. The objectives of this study were to use spatial 

statistical tools to examine county-level variation in drug poisoning mortality and highlight 

areas of the U.S. where drug-related poisoning deaths are higher or lower than expected, 

with the goal of informing efforts to address this growing epidemic.

2. Materials and methods

2.1. Data and empirical Bayes estimates

Data on drug poisoning deaths were obtained from the 2007–2009 National Vital Statistics 

Multiple Cause of Death Files (Kochanek et al., 2011; Minino et al., 2011). Deaths were 

classified using the International Classification of Diseases (ICD), Tenth Revision (ICD-10). 

Age-adjusted death rates (AADR) due to drug poisoning were calculated by county and year 

using the direct method and the 2000 standard population (Kochanek et al., 2011; Minino et 

al., 2011). Since drug poisoning deaths are a rare event, calculating county-level drug 

poisoning death rates based on crude rates will produce highly unstable estimates. We 

therefore used small area estimation techniques to produce stable county-level estimates of 

age-adjusted death rates (AADR) associated with drug poisoning for 3141 counties in the 

U.S., 2007–2009. Small area estimation techniques are increasingly being used in disease 

mapping to produce reliable estimates for areas where population sizes are small or events 

are infrequent. We review these methods briefly here. Details on the methods can be found 

in Supplemental Appendix A and has been recently described elsewhere (Rossen et al., 

2013).

Two-stage mixed effects models were used to estimate county-level drug poisoning AADRs, 

due to the highly non-normal distribution of poisoning death rates which are highly zero-

inflated and right-skewed (Afifi et al., 2007; Alfo and Maruotti, 2010; Baughman, 2007; 

Kowalski et al., 2003; Li et al., 2011; Wang, 2010; Xie et al., 2004), as approximately 24% 

of counties had zero deaths in any given year. The first stage modeled the probability of 

observing no deaths, and the second stage modeled the expected log-transformed age-

adjusted death rate, conditional on having a death. Mixed effects models are commonly used 
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in small area estimation, as they can be used to predict empirical Bayes estimates which 

borrow information across clusters to shrink extreme values and provide stable small area 

estimates (Pfefferman, 2002; Rao, 2003; Saei and Chambers, 2003; Skrondal and Rabe-

Hesketh, 2009).

We included county-level random intercepts and fixed effects in both steps of the model 

using the Generalized Linear and Latent Mixed Modeling (GLLAMM) procedures in Stata 

12.1 SE (Rabe-Hesketh et al., 2004; StataCorp, 2011). Fixed effects included a variety of 

county-level covariates drawn from several sources, including socio-demographic and 

economic characteristics, crime, urban–rural classification, and health-related data (Federal 

Bureau of Investigation, 2000), National Center for Health Statistics Urban–Rural 

Classification Scheme (Ingram and Franco, 2012) and the decennial Census of the U.S. 

population (U.S. Department of Commerce, Bureau of the Census, 2000)) for the year 2000. 

A list of included covariates can be seen in Table 1.

Metropolitan counties were classified to one of four levels based on the population size and 

proximity to urban centers: large core and large fringe (population >1 million); medium 

(population 250,000–999,999); and small (population <250,000). Non-metropolitan counties 

were classified as micropolitan or non-core. In this analysis, rural refers to non-core 

counties. Additionally, models included the estimated proportions of the population 

reporting nonmedical use of prescription medication as assessed by the National Survey on 

Drug Use and Health obtained from the Substance Abuse and Mental Health Services 

Administration for 344 substate regions, 2007–2008 (Substance Abuse and Mental Health 

Services Administration, 2009). Finally, the percent of deaths for which the final cause of 

death was pending (at the state level) was also included because poisonings account for a 

large proportion of pending deaths (Warner and Chen, 2012). The posterior predictions from 

each stage of the model incorporate both an empirical Bayes estimate for each county, plus 

the linear (or log-linear) prediction from the fixed effects portions of the models (Skrondal 

and Rabe-Hesketh, 2009). This auxiliary information was included to improve the predictive 

power of the models (Pfefferman, 2002; Saei and Chambers, 2003). Overall, 74% of the 

between-county variance in the likelihood of reporting at least one drug poisoning fatality 

was explained by the included covariates, as was 42% of the between-county variance in the 

age-adjusted death rates due to drug poisoning. County-level drug poisoning AADRs were 

then estimated by multiplying the predicted posterior probability of having a death obtained 

from the first step with the posterior mean drug-related AADR obtained from the second 

step. These predicted drug poisoning AADRs were then merged with U.S. Census Tiger/

Line files and mapped using ArcGIS 10.1 (ESRI, 2011).

2.2. Spatial statistical tools

2.2.1. Global index of spatial autocorrelation – Moran’s I—Global indexes of 

spatial autocorrelation were used to assess the similarity, or spatial dependence, across 

counties with respect to drug poisoning mortality. In other words, do counties with similar 

drug poisoning AADRs tend to be located close together or are drug poisoning AADRs 

randomly distributed across counties in the U.S.? The Global Moran’s I statistic is evaluated 

in terms of a null hypothesis that AADRs by county are spatially random (ESRI, 2011; 
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Waller and Gotway, 2004). From Waller and Gotway (2004), the Global Moran’s I statistic 

for spatial autocorrelation is given as

where zi is the deviation (xi−X) of AADR’s for county i from the overall mean, ωij is the 

spatial weight between county i and j (described below), n is equal to the total number of 

counties, and SO is the aggregate of all the spatial weights:

The zi-score for the statistic is

where E[I] = −1/(n − 1) and V[I] = E[I2] − E[I]2.

High values of the Moran’s I and corresponding z-scores greater than −1.96 indicate that 

there is statistically significant clustering across the study area (p < 0.05). Low values of the 

Moran’s I and z-scores less than −1.96 indicate that there is statistically significant regularity 

(nearby counties have very different AADRs). Moran’s I can be thought of as a spatially 

weighted form of Pearson’s correlation coefficient (Waller and Gotway, 2004).

2.2.2. Conceptualization of spatial relationships—There are several ways to define 

ωij, the spatial weight between county i and j. We explored three methods, inverse distance, 

K nearest neighbors and Delaunay triangulation. In the inverse distance conceptualization, 

every county is assumed to be a neighbor of every other county, and the influence of 

counties decays with increasing distance (ESRI, 2011). Since our study area consisted of the 

entire U.S., this conceptualization is problematic because large distances between counties 

result in very small weights and “salt-and-pepper” style maps. Additionally, the 

heterogeneity in county sizes across the U.S. leads to small counties with close neighbors 

being given greater weight than larger counties with neighbors that are farther away. To 

circumvent the issue of heterogeneous county sizes and the large study area, we explored the 

K nearest neighbors option, where a general rule of thumb is to evaluate each county in the 

context of a minimum of eight neighbors (ESRI, 2011). However, because we found several 

isolated counties with fewer than eight neighbors (i.e., some counties in Hawaii and Alaska), 

we ultimately proceeded with the Delaunay triangulation conceptualization of spatial 

relationships. Delaunay triangulation specifies natural neighbors for a set of counties by 

creating Voronoi triangles from county centroids; nodes connected by a triangle edge are 

considered neighbors. Fig. 1 illustrates the Delaunay triangulation method.
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This method works well when there are isolated features or heterogeneity in county size 

(ESRI, 2011). This method ensures that every county has at least one neighbor but utilizes 

the distribution of the data for determining how many neighbors each county gets. We 

created a spatial weights matrix file using the Delaunay triangulation conceptualization of 

spatial relationships. Sensitivity analyses were conducted using the eight-nearest-neighbors 

conceptualization.

2.2.3. Local indicators of spatial association – Getis-Ord —While global 

indexes of spatial autocorrelation assess whether there is clustering across the study area, 

local indicators of spatial association can be used to identify specific clusters of high or low 

drug poisoning AADRs (Waller and Gotway, 2004). We used the Getis-Ord  statistic to 

identify significant clusters of counties with high or low AADRs (ESRI, 2011). The Getis-

Ord  statistic generates a z-score and corresponding p-value for each data point, where z-

scores greater than −1.96 indicate a significant “hot spot” and z-scores lower than 1.96 

indicate a significant “cold spot” (p < 0.05). From ESRI (2011), the Getis-Ord  statistic is 

calculated as

where xj is the AADR’s for each county j, ωij is the spatial weight between county i and j, n 

is equal to the total number of features and

and

3. Results

The predicted mean county-level AADR for the years 2007–2009 was 30.76 per 100,000 

population (SD: 16.08), and ranged from a low of 0.45 to a high of 128.48 per 100,000 

population. The raw county-level AADRs ranged from 0 to 222.4 per 100,000 population 

(SD: 26.5). The differences between the range in estimated AADRs and the raw rates were 

small; however, the estimated AADRs were much less variable. Fig. 2 depicts the predicted 

drug poisoning AADRs across 3141 counties for the years 2007–2009. Approximately 

7.64% of counties had AADRs less than 10 per 100,000 population, while 11.37% of 

counties had AADRs greater than 50 per 100,000 population.
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3.1. Clustering of drug poisoning mortality – Moran’s I

The Global Moran’s I was 0.55, with a corresponding z-score of 53.53, suggesting that there 

was significant spatial autocorrelation of county-level drug poisoning AADRs (p < 0.05). In 

other words, across the U.S., counties with similar drug poisoning AADRs tend to locate 

closer to one another than we would expect by random chance.

3.2. Hot and cold spots – Getis-Ord 

Significant clusters of counties with high (hot spots) and low (cold spots) AADRs, as 

assessed by the Getis-Ord  tool can be seen in Fig. 3.

Sensitivity analyses using eight-nearest-neighbors produced very similar results (not 

shown). While some previous studies have suggested that drug poisoning AADRs are higher 

in rural areas as compared to more urban areas, we observed significant hot spots and cold 

spots in rural areas. Significant hot spots were seen along the North Pacific coast (i.e., 

northern California, Washington), the Southwest (i.e., Nevada, Arizona and New Mexico), 

Oklahoma, Appalachia (i.e., areas of Kentucky, Tennessee, West Virginia, Virginia, North 

Carolina), and the Gulf coast (i.e., the coast of Louisiana, Mississippi, and Florida). Cold 

spots were identified across the Central Plains (i.e., North and South Dakota, Nebraska, 

Kansas), Texas, and regions of Alaska. Results indicate that rural areas represent both hot 

and cold spots in drug poisoning death rates. Rural areas across the Central Plains states, 

Texas, and Alaska represent significant cold spots; while rural areas in Appalachia, Northern 

California, Oklahoma, and New Mexico represent significant hot spots.

4. Discussion

There is substantial geographic variation in age adjusted death rates (AADR) due to drug 

poisoning across the U.S. Results of global tests of spatial autocorrelation (i.e., Moran’s I) 

confirm that drug poisoning mortality exhibits spatial dependence. In other words, across the 

entire U.S., counties with high drug poisoning AADRs tend to locate closer together than we 

would expect at random. Conversely, counties with low levels of drug poisoning mortality 

also tend to cluster together geographically. Using local indicators of spatial association 

(i.e., Getis Ord ), we were able to identify several hot and cold spots across the U.S. that 

represent clusters of counties with significantly high or low drug poisoning death rates. The 

main hot spots detected occurred along the North Pacific coast (i.e., northern California, 

Washington), the Southwest (i.e., Nevada, Arizona and New Mexico), Oklahoma, 

Appalachia (i.e., areas of Kentucky, Tennessee, West Virginia, Virginia, North Carolina), 

and the Gulf coast (i.e., the coast of Louisiana, Mississippi, and Florida). Cold spots were 

identified across the Central Plains (i.e., North and South Dakota, Nebraska, Kansas), Texas, 

and regions of Alaska.

Previous research has indicated that drug poisoning mortality is a major concern for rural 

areas, and particularly for Appalachia (Centers for Disease Control and Prevention, 2011; 

Frosch, 2012; Hiaasen, 2009; Paulozzi and Ryan, 2006; Rossen et al., 2013; Wunsch et al., 

2009). Our results are partially consistent with these patterns, as we did observe a hot spot of 

extremely high death rates due to drug poisoning in the Appalachian region. Hot spots were 
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also observed for rural regions of Northern California, New Mexico, Oklahoma, Arkansas, 

and Michigan. However, we also observed cold spots, or significantly low AADRs due to 

drug poisoning, across large swaths of rural counties in the central U.S. For example, cold 

spots in North and South Dakota, Nebraska, Kansas, Minnesota, Iowa, and Texas were 

predominantly in rural areas. In contrast to previous research suggesting that drug poisoning 

mortality is disproportionately high in rural areas as opposed to more urban areas; our 

results indicate that rural areas of the U.S. represented some of the lowest and highest drug 

poisoning death rates. As previous research has largely not examined spatial variation in 

drug poisoning mortality, results of this study highlight that the variation in drug poisoning 

mortality appears to be influenced heavily by geography as opposed to just urban–rural 

classification. One analysis of opioid-related deaths in New Hampshire reported that there 

was significant clustering of poisoning deaths across Zip Code Tabulation Areas, and that 

death rates were associated with lower area income levels and higher rates of employment-

related disability, but not with rural status (Hester et al., 2012). Hester et al. (2012) 

suggested that geographic factors such as proximity to regions where opioids are highly 

available might be more critical to spatial patterning than population density.

Substantial geographic variation in drug poisoning mortality was apparent, as clear clusters 

of counties with extremely high and low drug poisoning AADRs emerged. These clusters 

often crossed state borders, as could be seen in the Appalachian region and the hot spots 

across the Pacific coast and Southwest U.S., as well as the large cold spots that were seen in 

the central U.S. More research is needed to explore the drivers of these geographic patterns, 

as it remains unclear why certain areas of the U.S. are experiencing extremely high (or low) 

drug poisoning death rates. A variety of regional-, county-, or neighborhood-level 

characteristics could be associated with geographic variation in drug poisoning mortality. A 

recent analysis reported that the amount of opioids prescribed was highest in Nevada, 

Florida and the Appalachian states; similar to some of the geographic patterns in drug 

poisoning mortality observed in this study (McDonald et al., 2012). Maps of the prevalence 

of nonmedical use of pain relievers from the National Survey of Drug Use and Health also 

overlap with drug poisoning mortality in many areas (Substance Abuse and Mental Health 

Services Association, 2012). For example, states on the Pacific Coast, South West, and 

Oklahoma have reported high prevalence rates of nonmedical use of pain relievers, while 

North and South Dakota have relatively low prevalence rates. A spatial analysis of hot and 

cold spots of drug use in the U.S. (also using data from the National Survey of Drug Use and 

Health) generated results that are similar in some regards to those described in the present 

analysis (Gopal et al., 2008). For example, North and South Dakota appeared to represent 

cold spots when mapping rates of abuse or dependence on illicit drugs (excluding 

marijuana), while hot spots were identified in parts of California, the South West, 

Oklahoma, and some Appalachian states (Gopal et al., 2008). However, that analysis also 

suggested that parts of Texas represented a hot spot, and also identified Pennsylvania and 

Maryland as cold spots, in contrast to the present study of drug poisoning mortality. Results 

may differ for several reasons. Gopal et al. (2008) utilized data from 2002 to 2004 and 

patterns may have changed over time, self-report data may produce different spatial patterns 

as compared to data from death certificates, and/or geographic variation in drug abuse or 

dependence may not cohere with that of mortality due to drug poisoning. As few studies 
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have looked at variation at the sub-state level (Cerdá et al., 2013; DiMaggio et al., 2008; 

Green and Donnelly, 2011; Green et al, 2011; Hester et al., 2012; Modarai et al., 2013; 

Rossen et al., 2013) the drivers of spatial variation in drug poisoning mortality remain 

unclear. Further research is needed to elucidate the causal factors that contribute to these 

geographic patterns.

This study has a few limitations. It is possible that drug poisoning deaths were 

underestimated. There are many challenges to accurately classifying deaths due to drug 

poisoning and compiling this information on a national scale; a process which relies heavily 

on professional judgment and varying levels of evidence and resources available to medical 

examiners and coroners (Davis, 2013; Prescription Monitoring Program Center of 

Excellence at Brandeis, 2011; Szalavitz, 2010; Warner et al., 2013). Therefore, there may be 

some misclassification bias when using federal vital statistics to examine drug poisoning 

deaths (Dasgupta et al., 2008). Poisoning deaths are disproportionately represented among 

the cases where the cause of death remains pending in the death certificate data, so although 

we included the percent of pending cases at the state level as a covariate in our models, it is 

possible that pending cause of death disproportionately represents drug poisoning mortality 

and varies by county; additionally, other types of misclassification may vary geographically, 

potentially affecting our examinations of county-level spatial variation (Dasgupta et al., 

2008; Landen et al., 2003). This kind of misclassification would be more likely to contribute 

to the incorrect identification of cold spots, though it could also result in the failure to detect 

a hot spot particularly in sparsely populated areas where a single death can substantially 

influence the AADR for that county. The purpose of using small area estimation techniques 

was to stabilize these extreme or unreliable values. The advantage of using small area 

estimation is that information is ‘borrowed’ across units to produce reliable estimates when 

only small samples are available in certain areas, such as in rural counties. The inclusion of 

various covariates derived from many data sources served to improve these predictions, and 

explained a large portion of the between-county variance in the likelihood of observing a 

drug poisoning fatality and the age-adjusted death rate due to drug poisoning. However, 

there was a degree of unexplained variance, which could be the result of residual spatial 

variation or omitted variables such as access to various types of drugs, or other factors 

related to local drug markets, physician prescribing patterns, or the prevalence of doctor-

shopping or drug-diversion (National Research Council, 2010; Paulozzi and Ryan, 2006). 

Future studies should examine these potential determinants to explore whether these factors 

may help to explain some of the clusters of extremely high drug poisoning death rates 

observed in this study.

Future studies should also explore spatial patterns by type of drug, as findings may differ for 

illicit or prescription drugs (Cerdá et al, 2013; Dasgupta et al., 2008; Hester et al., 2012; 

National Research Council, 2010). As this study examined drug poisoning overall, it 

remains unclear how spatial patterns by drug type might overlap or remain distinct, and how 

the overall spatial patterning might be influenced. For example, a report on drug poisonings 

in Connecticut reported that heroin fatalities were more likely to occur in urban areas, while 

prescription opioid fatalities were more likely to occur in small towns (Green et al., 2011). 

Dasgupta et al. (2008) reported distinct geographic patterns for heroin overdoses as 

compared to prescription opioid deaths, and variation between metropolitan and non-
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metropolitan areas in death rates due to alcohol, benzodiazepines, antidepressants, 

prescription opioids, and illicit drugs. Recent studies have also shown that there are changes 

in drug use patterns with nonmedical users of prescription opioids transitioning to heroin use 

(Jones, 2013). For the purposes of this analysis, we examined overall drug poisoning 

mortality for two reasons. First, because previous studies have reported that the 

classification of deaths due to a specific drug are more prone to error than categorizing 

overall drug poisoning in vital statistics (Landen et al., 2003). Second, because the specific 

drug type was not available for 25% of the drug poisoning deaths, and it varied by state, 

ranging from approximately 65% to less than 1% missing data (Warner et al., 2013).

Finally, there is no ideal characterization of spatial relationships when analyzing hot spots, 

particularly when examining a large geographic region such as the entire U.S. Due to the 

presence of several island counties in Hawaii and Alaska and general unevenness of county 

size (in terms of geographic area), we used Delaunay triangulation, which creates weights 

based on a county’s natural neighbors and ensures every county has a least one neighbor. 

We also ran analyses using eight nearest neighbors, which produced results largely similar 

to those reported here. However, there are alternative characterizations that could be 

explored, such dividing the U.S. into regions and examine each separately to ensure some 

consistency in county size. While counties may not be the ideal unit to examine drug 

poisoning mortality, as there is likely substantial variation at the sub-county level, the data 

are compiled for the nation by county. Results are subject to potential biases related to the 

modifiable areal unit problem and ecological fallacies (Holt et al., 1996).

This study has a number of strengths. We used small area estimation techniques to generate 

stable estimates of age adjusted death rates due to drug poisoning at the county level. It is 

the first study to highlight spatial clusters of high and low drug poisoning death rates in the 

U.S. and was able to identify hot or cold spots that span multiple states. Previous studies 

have focused on limited geographic areas such as a single state (Cerdá et al, 2013; 

DiMaggio et al., 2008; Green and Donnelly, 2011; Modarai et al., 2013), have not used 

small area estimation methods, or spatial statistical tools to examine geographic variation in 

drug poisoning mortality across the U.S.

5. Conclusions

In sum, there is substantial geographic variation in drug poisoning mortality across the U.S. 

Counties with high and low death rates due to drug poisoning tend to cluster together more 

than we would expect by chance. Several hot spots were detected, notably, Appalachia, 

areas of Northern California, Nevada, Arizona and New Mexico, Oklahoma, Florida, and 

parts of the Gulf Coast. Cold spots were observed across the North-Central U.S., and parts 

of Texas. As rural areas contributed to both hot and cold spots, no uniform pattern emerged 

by rural or urban classification. Examining geographic variation in drug poisoning death 

rates is critical to future efforts aimed at understanding and targeting this growing epidemic.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://

dx.doi.org/10.1016/j.healthplace.2013.11.005.
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Fig. 1. 
Example of Delaunay triangulation. Counties in light gray are considered neighbors of the 

county shaded dark gray.

Rossen et al. Page 13

Health Place. Author manuscript; available in PMC 2015 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Predicted drug poisoning AADR by county, 2007–2009.
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Fig. 3. 
Hot and cold spots in drug poisoning mortality, 2007–2009
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Table 1

Covariates included in empirical Bayes estimate modeling of age-adjusted death rates due to drug poisoning in 

the U.S., 2007–2009.

Region of the country (Division: New England, Mid-Atlantic, East North Central, West North 
Central, South Atlantic, East South Central, West South Central, Mountain, Pacific)

Median age

Percent black

Percent white

Percent Hispanic

Latitude and longitude of county centroid Square miles Percent Asian Percent other race

Population size Percent with less than HS education

Residential density Percent female headed households

Percent rural Number of MDs

Percent of land that is farm Number of hospitals

Median home value Percent on medicare

Percent household public assistance Percent on medicaid

Percent renter occupied housing Number in jail

Percent households with dividend income Number in juvenile detention

Percent English speaking Number homeless

Percent native Average percent humidity in July

Percent households without earnings Above the median arrests for drug sale

Above the median arrests for drug-related crimes Percent unemployed

Central, fringe, medium metropolitan, micropolitan, non-core/rural Percent of deaths with pending causes

Proportion of population reporting nonmedical prescription drug use
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